792 research outputs found

    On the Formation of Boxy and Disky Elliptical Galaxies

    Get PDF
    The origin of boxy and disky elliptical galaxies is investigated. The results of two collisionless N-body simulations of spiral-spiral mergers with mass ratios of 1:1 and 3:1 are discussed and the projected properties of the merger remnants are investigated. It is shown that the equal-mass merger leads to an anisotropic, slowly rotating system with preferentially boxy isophotes and significant minor axis rotation. The unequal-mass merger results in the formation of a rotationally supported elliptical with disky isophotes and small minor axis rotation. The observed scatter in the kinematical and isophotal properties of both classes of elliptical galaxies can be explained by projection effects.Comment: 12 pages, incl. 5 figures, accepted by ApJ Letter

    The flattening and the orbital structure of early-type galaxies and collisionless N-body binary disk mergers

    Get PDF
    We use oblate axisymmetric dynamical models including dark halos to determine the orbital structure of intermediate mass to massive Coma early-type galaxies. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 percent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models we show that flattening by stellar anisotropy maximises the entropy for a given density distribution. Collisionless disk merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of disks unless the influence of dissipational processes was significant.Comment: 14 pages, 8 figures; accepted for publication in MNRA

    Nuclear Activity and the Dynamics of Elliptical Galaxies

    Full text link
    This paper looks for any correlation between the internal dynamics of elliptical galaxies and the relatively mild nuclear activity found in many such systems. We show that there is such a relation in the sense that the active ellipticals tend to be significantly less rotationally supported than their inactive cousins. The correlation can partly be related to the galaxies' luminosities: the brightest galaxies tend to be more active and less rotationally supported. However, even at lower luminosities the active and inactive galaxies seem to have systematically different dynamics. This variation suggests that there are significant large-scale structural differences between active and inactive elliptical galaxies, and hence that the existence of both types of system cannot just be the result of random sporadic nuclear activity.Comment: 5 pages, 3 figures. Accepted for publication in MNRA

    Probing for evolutionary links between local ULIRGs and QSOs from NIR spectroscopy

    Full text link
    We present a study of the dynamical evolution of Ultraluminous Infrared Galaxies (ULIRGs), merging galaxies of infrared luminosity >10^12 L_sun. During our Very Large Telescope large program, we have obtained ISAAC near-infrared, high-resolution spectra of 54 ULIRGs (at several merger phases) and 12 local Palomar-Green QSOs to investigate whether ULIRGs go through a QSO phase during their evolution. One possible evolutionary scenario is that after nuclear coalescence, the black hole radiates close to Eddington to produce QSO luminosities. The mean stellar velocity dispersion that we measure from our spectra is similar (~160 km/s) for 30 post-coalescence ULIRGs and 7 IR-bright QSOs. The black holes in both populations have masses of order 10^7-10^8 M_sun (calculated from the relation to the host dispersion) and accrete at rates >0.5 Eddington. Placing ULIRGs and IR-bright QSOs on the fundamental plane of early-type galaxies shows that they are located on a similar region (that of moderate-mass ellipticals), in contrast to giant ellipticals and radio-loud QSOs. While this preliminary comparison of the ULIRG and QSO host kinematical properties indicates that (some) ULIRGs may undergo a QSO phase in their evolutionary history before they settle down as ellipticals, further data on non-IR excess QSOs are necessary to test this scenario.Comment: To appear in the "QSO Host Galaxies: Evolution and Environment" conference proceedings; meeting held in Leiden, August 200

    The SILCC (SImulating the LifeCycle of molecular Clouds) project: I. Chemical evolution of the supernova-driven ISM

    Full text link
    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of ΣGAS=10  M/pc2\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H2_2 and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H2_2 is strongly suppressed. Also without self-gravity the H2_2 fraction is significantly lower (\sim 5%). Most of the volume is filled with hot gas (\sim90% within ±\pm2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas (n10  cm3n\gtrsim 10\;{\rm cm}^{-3}) and delay H2_2 formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.Comment: 30 pages, 23 figures, submitted to MNRAS. Comments welcome! For movies of the simulations and download of selected Flash data see the SILCC website: http://www.astro.uni-koeln.de/silc

    Dynamical evolution of massive black holes in galactic-scale N-body simulations - Introducing the regularized tree code 'rVINE'

    Get PDF
    We present a hybrid code combining the OpenMP-parallel tree code VINE with an algorithmic chain regularization scheme. The new code, called "rVINE", aims to significantly improve the accuracy of close encounters of massive bodies with supermassive black holes in galaxy-scale numerical simulations. We demonstrate the capabilities of the code by studying two test problems, the sinking of a single massive black hole to the centre of a gas-free galaxy due to dynamical friction and the hardening of a supermassive black hole binary due to close stellar encounters. We show that results obtained with rVINE compare well with NBODY7 for problems with particle numbers that can be simulated with NBODY7. In particular, in both NBODY7 and rVINE we find a clear N-dependence of the binary hardening rate, a low binary eccentricity and moderate eccentricity evolution, as well as the conversion of the galaxy's inner density profile from a cusp to a a core via the ejection of stars at high velocity. The much larger number of particles that can be handled by rVINE will open up exciting opportunities to model stellar dynamics close to SMBHs much more accurately in a realistic galactic context. This will help to remedy the inherent limitations of commonly used tree solvers to follow the correct dynamical evolution of black holes in galaxy scale simulations

    The SILCC project: III. Regulation of star formation and outflows by stellar winds and supernovae

    Get PDF
    We study the impact of stellar winds and supernovae on the multi-phase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2^2 x ±\pm 5 kpc and a gas surface density of 10 M_{\odot}/pc2^2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters which combine the winds from indi- vidual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-)shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters which have lower average masses (102^2 - 104.3^{4.3} M_{\odot}) and form on shorter timescales (103^{-3} - 10 Myr). In particular we find an anti-correlation of cluster mass and accretion time scale. Without winds the star clusters easily grow to larger masses for ~5 Myr until the first supernova explodes. Overall the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disk (mass loading \gtrsim 1 at 1 kpc) can be launched by thermal gas pressure if more than 50% of the volume near the disc mid-plane can be heated to T > 3x105^5 K. Stellar winds alone cannot create a hot volume-filling phase. The models which are in best agreement with observed star formation rates drive either no outflows or weak outflows.Comment: 23 pages; submitted to MNRA

    The Cool ISM in Elliptical Galaxies. II. Gas Content in the Volume - Limited Sample and Results from the Combined Elliptical and Lenticular Surveys

    Full text link
    We report new observations of atomic and molecular gas in a volume limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low luminosity E and SO galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the AGN feedback and merger paradigms might offer explanations for differences in detection rates, and might also point towards an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early type galaxies. Atomic gas comprises a greater fraction of the cool ISM in more gas rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.Comment: 37 pages, including 4 tables and 12 figures. Accepted for publication in the Astrophysical Journa

    Dynamical properties of Ultraluminous Infrared Galaxies I: Mass ratio conditions for ULIRG activity in interacting pairs

    Full text link
    We present first results from our Very Large Telescope large program to study the dynamical evolution of Ultraluminous Infrared Galaxies (ULIRGs), which are the products of mergers of gas-rich galaxies. The full data set consists of high resolution, long-slit, H- and K-band spectra of 38 ULIRGs and 12 QSOs (between 0.042<z<0.268). In this paper, we present the sources that have not fully coalesced, and therefore have two distinct nuclei. This sub-sample consists of 21 ULIRGs, the nuclear separation of which varies between 1.6 and 23.3 kpc. From the CO bandheads that appear in our spectra, we extract the stellar velocity dispersion, sigma, and the rotational velocity, V_rot. The stellar dispersion equals 142 km/s on average, while V_rot is often of the same order. We combine our spectroscopic results with high-resolution infrared (IR) imaging data to study the conditions for ULIRG activity in interacting pairs. We find that the majority of ULIRGs are triggered by almost equal-mass major mergers of 1.5:1 average ratio. Less frequently, 3:1 encounters are also observed in our sample. However, less violent mergers of mass ratio >3:1 typically do not force enough gas into the center to generate ULIRG luminosities.Comment: Accepted for publication in "The Astrophysical Journal
    corecore